Zagdu Singh Charitable 'Trust's (Regd.) # THAKUR COLLEGE OF **ENGINEERING & TECHNOLOGY** (Approved by AICTE, Govt. of Maharashtra & Affiliated to University of Mumbai*) (Accredited Programmes by National Board of Accreditation, New Delhi**) A - Block, Thakur Educational Campus, Shyamnarayan Thakur Marg, Thakur Village, Kandivali (East), Mumbai - 400 101. Tel.: 6730 8000 / 8106 / 8107 Fax: 2846 1890 Email: tcet@thakureducation.org Website : www.tcetmumbai.in • www.thakureducation.org ISO 9001:2008 Certified Revision: A Class: BE A *Permanent Affiliated UG Programmes: • Computer Engineering • Electronics & Telecommunication Engineering • Information Technology (w.e.f.: A.Y. 2015-16 onwards) **1st time Accredited UG Programmes: • Computer Engineering • Electronics & Telecommunication Engineering • Information Technology **2nd time Accredited UG Programmes: • Computer Engineering • Electronics & Telecommunication Engineering • Information Technology • Electronics Engineering (3 years w.e.f.:01-07-2016) ### TCET/FRM/IP-02/09 # **Semester Plan** (Theory) Semester: Course: EXTC VII Subject: Microwave and Radar Engineering | Sr. No | Prerequisite /Bridge Course | Duration(H
r/week) | Modes of learning | Recommended Resources | |--------|---|-----------------------|--|---| | 1 | Electric field intensity(E), Electric flux density(D), Magnetic field intensity(H), Magnetic flux density(B), Gauss's Law for electric and magnetic field, Amperes Law's, Faraday's Law for electromagnetic Induction and Maxwell's Equation. | 4 hrs | Self
learning
and
classroom
revision | Elements of electromagnetic By Sadiku (Page No.103-155,261-296,369-404) | | Sr.
No | Module
No. | Lesson
No. | Topics Planned
(Technology to be used) | Teaching
Aids
Required | Planned
/Completi
on Date | Resource
Book
Reference | Remarks | |-----------|---------------|---------------|--|------------------------------|---------------------------------|-------------------------------|---| | 1 | | 1.1 | MWRE(Th) | PPT | 10/07/17 | | | | 2 | | 1.2 | ACEL-II(PR) | PPT | 11/07/17 | | | | 3 | | 1.3 | MWRE(OBE) | PPT | 13/07/17 | | | | 4 | M1 | 2.1 | Frequency bands and characteristics of microwaves | Black
board and
PPT | 17/7/17 | 1.7.1 | | | 5 | M1 | 2.2 | Rectangular , mode analysis | Black
board and
PPT | 18/7/17 | 1.7.2 | | | 6 | M1 | 2.3 | circular waveguides, mode analysis | Black
board and
PPT | 18/7/17 | 1.7.3 | Instead of 2
lectures will
be
completed
in 1 lectures | | 7 | M1 | 2.4 | Resonators, reentrant cavities, scattering parameters, | Black
board and
PPT | 19/7/17 | 1.7.4 | | | 8 | M1 | 2.5 | tees, hybrid ring, directional couplers, phase shifters, | Black
board and
PPT | 21/7/17 | 1.7.5 | Instead of 2
lectures will
be completed
in 1 lectures | | Sr.
No | Module
No. | Lesson
No. | Topics Planned
(Technology to be used) | Teaching
Aids
Required | Planned
/Completi
on Date | Resource
Book
Reference | Remark | |-----------|---------------|---------------|---|------------------------------|---------------------------------|-------------------------------|---| | 9 | M1 | 3.1 | terminations attenuators, | Blackboard and PPT | 24/7/17 | 1.7.6 | | | 10 | M1 | 3.2 | ferrite devices such as isolators,. | Blackboard
and PPT | 26/7/17 | 1.7.7 | | | 11 | M1 | 3.3 | gyrators, and circulators | Blackboard
and PPT | 27/7/17 | 1.7.8 | | | 12 | M2 | 3.4 | Lumped element matching | Blackboard
and PPT | 28/7/17 | 2.7.1 | Instead of 2
lectures will
be
completed
in 1 lectures | | 13 | M2 | 4.1 | Single stub tuning | Blackboard | 31/7/17 | 2.7.2 | | | 14 | M2 | 4.2 | double stub tuning | Blackboard
and PPT | 2/8/17 | 2.7.3 | | | 15 | M2 | 4.3 | double stub tuning | Blackboard
and PPT | 3/8/17 | 2.7.4 | | | 16 | M2 | 4.4 | triple stub tuning | Blackboard
and PPT | 4/8/17 | 2.7.5 | Instead of 2
lectures will
be
completed
in 1 lectures | | 17 | M2 | 5.1 | Quarter wave transformer | Blackboard
and PPT | 7/8/17 | 2.7.6 | | | 18 | М3 | 5.2 | Two Cavity Klystron | Blackboard
and PPT | 9/8/17 | 3.7.1 | | | Sr.
No | Module
No. | Lesson
No. | Topics Planned
(Technology to be used) | Teaching
Aids
Required | Planned
/Completi
on Date | Resource
Book
Reference | Remark | |-----------|---------------|---------------|--|------------------------------|---------------------------------|-------------------------------|---| | 19 | M3 | 5.3 | Reflex Klystron | Blackboard
and PPT | 10/8/17 | 3.7.2 | | | 20 | M3 | 5.4 | Helix Travelling Wave Tube | Blackboard and PPT | 11/8/17 | 3.7.3 | Instead of 2
lectures will
be
completed
in 1 lectures | | 21 | M3 | 6.1 | Helix Travelling Wave Tube | Blackboard | 14/8/17 | 3.7.4 | | | 22 | M3 | 6.2 | Backward Wave Oscillator | Blackboard
and PPT | 16/8/17 | 3.7.5 | | | 23 | M3 | 6.3 | Cross Field Amplifier | Blackboard
and PPT | 18/8/17 | 3.7.6 | | | 24 | M3 | 7.1 | Cylindrical Magnetron, | Blackboard
and PPT | 24/8/17 | 3.7.7 | Instead of 2
lectures will
be
completed
in 1 lectures | | 25 | M3 | 8.1 | Operation of Gyrotrons | Blackboard
and PPT | 30/8/17 | 3.7.8 | in ricciures | | 26 | M4 | 8.2 | Characteristics of Varactor diode | Blackboard
and PPT | 31/8/17 | 4.7.1 | | | 27 | M4 | 8.3 | Characteristics of PIN diode | Blackboard and PPT | 1/9/17 | 4.7.2 | | | 28 | M4 | 9.1 | Characteristics of Tunnel diode, Point Contact | Blackboard
and PPT | 4/9/17 | 4.7.3 | Instead of 2
lectures will
be
completed
in 1 lectures | | 29 | M4 | 9.2 | Schottky Barrier,
Gunn,IMPATT. | Blackboard
and PPT | 6/9/17 | 4.7.4 | | | Sr.
No | Module
No. | Lesson
No. | Topics Planned
(Technology to be used) | Teaching
Aids
Required | Planned
/Completi
on Date | Resource
Book
Reference | Remark | |-----------|---------------|---------------|--|------------------------------|---------------------------------|-------------------------------|---| | 30 | M4 | 9.3 | TRAPATT,BARITT. | Blackboard
and PPT | 7/9/17 | 4.7.5 | | | 31 | M4 | 9.4 | Characteristics of Point
Contact diode | Blackboard
and PPT | 8/9/17 | 4.7.6 | | | 32 | M4 | 10.1 | MESFET, BJT, | Blackboard
and PPT | 11/9/17 | 4.7.7 | | | 33 | M4 | 10.2 | Hetro junction BJT | Blackboard
and PPT | 13/9/17 | 4.7.8 | | | 34 | M4 | 10.3 | HEMT ,Parametric Amplifiers | Blackboard
and PPT | 14/9/17 | 4.7.9 | | | 35 | M5 | 11.1 | Basics of RADAR ,RADAR range equation | Blackboard
and PPT | 18/9/17 | 5.7.1 | | | 36 | M5 | 11.2 | Types of RADAR: Pulsed,
Continuous wave | Blackboard
and PPT | 20/9/17 | 5.7.2 | | | 37 | M5 | 11.3 | Types of RADAR : FMCW | Blackboard and PPT | 21/9/17 | 5.7.3 | | | 38 | M5 | 11.4 | Types of RADAR: Doppler, MTI, | Blackboard
and PPT | 22/9/17 | 5.7.4 | | | 39 | M5 | 12.1 | Types of RADAR : Phased
Array, displays and Clutter | Blackboard
and PPT | 25/9/17 | 5.7.5 | Instead of 2
lectures will
be
completed
in 1 lectures | | Remark:: Syllabus C
Course: | | Syllabus (| Coverage: No. of (lectures planned | Beyond S
Introducti
&SOC | | Beyond Syllal
Beyond Syllal
Introduction to
&SOC | /llabus: | | |--------------------------------|---------------|---------------|---|--------------------------------|---------------------------------|---|---|--| | 46 | M6 | 15.2 | RADAR based navigation , radiometer | Blackboard
and PPT | 17/10/17 | 6.7.5 | | | | 45 | M6 | 15.1 | instrumentation landing system | Blackboard
and PPT | 16/10/17 | 6.7.4 | | | | 44 | M6 | 14.2 | MSTRADAR | Blackboard
and PPT | 13/10/17 | 6.7.4 | | | | 43 | M6 | 14.1 | Remote sensing RADAR | Blackboard
and PPT | 12/10/17 | 6.7.3 | | | | 42 | M6 | 13.3 | Microwave heating and bio-
medical applications | Blackboard
and PPT | 6/10/17 | 6.7.1 | Instead of 2
lectures will
be
completed
in 1 lectures | | | 41 | M5 | 13.2 | Tracking RADAR: Sequential lobbing | Blackboard
and PPT | 5/10/17 | 5.7.7 | | | | 40 | M5 | 13.1 | Tracking RADAR: Mono pulse Tracking RADAR: Conical, | | 4/10/17 | 5.7.6 | | | | Sr.
No | Module
No. | Lesson
No. | Topics Planned
(Technology to be used) | Teaching
Aids
Required | Planned
/Completi
on Date | Resource
Book
Reference | Remark | | | 1 | Advanced course: MEMS and Micrrosystems | 12 week | NPTEL videos
with hands on
training in
Laboratory | http://nptel.ac.in/courses/117105082 "Microsystem Design" by Stephen Senturia "Fundamentals of Microfabrication" by Marc Madou | |---|---|---------|--|---| |---|---|---------|--|---| #### **Text Books:** - 1. David M Pozar, —Microwave Engineering, John Wieley & Sons, Inc. Hobokenh, New Jersey, Fourth Edition, 2012. - 2. Samuel YLiao, —Microwave Devices and Circuits, Pearson Education, Third Edition Reference Books: - 1. Merill Skolnik, —Introduction to RADAR Systems, TataMcgraw Hill, Third Edition - 2. Annapurna Das and Sisir K Das, —Microwave Engineering, Tata McGraw Hill, New Delhi, Second Edition, 2009 - 3. K. T. Matthew, —Microwave Engineeringl, Wieleyindia, ,2011 **Digital Reference**: | Sd | Sd | Sd | |-----------------------------|----------------------|------------------------------| | Mr. Yogesh Kumar | Dr.Vinitkumar Dongre | Dr.R.R.Sedamkar | | Name & Signature of Faculty | Signature of HOD | Signature of Dean (Academics | | Date: | Date: | Date: | #### Note: - 1. Plan date and completion date should be in compliance - 2. Courses are required to be taught with emphasis on resource book, course file, text books, reference books, digital references etc. - 3. Planning is to be done for 15 weeks where 1st week will be AOP, 2nd -13th for effective teaching and 14th -15th week for effective university examination oriented teaching, mock practice session and semester consolidation. - 4. According to university syllabus where lecture of 4 hrs/per week is mentioned minimum 55 hrs and in case of 3 lectures per week minimum 45 lectures are to be engaged are required to be engaged during the semester and therefore accordingly semester planning for delivery of theory lectures shall be planned. - 5. In order to improve score in NBA, faculty members are also required to focus course teaching beyond university prescribed syllabus and measuring the outcomes w.r.t learning course and programme objectives. - 6. Text books and reference books are available in syllabus. Here only additional references w.r.t. non –digital/ digital sources can be written (if applicable) - 7. Technology to be used in class room during lecture shall be written below the topic planned within the bracket.